John Finke, Ph.D.

Assistant Professor ; Graduate Faculty

Specialty: Biochemistry, Biophysics

Finke, John

Contact information

Dept: Interdisciplinary Arts and Sciences
Room: SCI 226
Phone: 253-692-4351
Email: jfinke@uw.edu
Schedule: On research leave

Degrees

  • Ph.D., Chemistry, University of California San Diego, 2001.
  • M.S., Chemistry, University of California San Diego, 1998.
  • B.A., Biochemistry, Claremont-McKenna College, 1993.

Biography

I am a biochemist and use a combination of biology, chemistry, and physics to solve difficult problems in biochemistry. I am interested in the how our immune system regulates and responds to misfolded proteins linked to neurological diseases such as Alzheimer's Disease. Simply put, does the immune system speed up or slow down the progression of Alzheimer's?

My lab uses a range of scientific tools, including surface plasmon resonance microfluidic sensors, fluorescence spectroscopy, chromatography, Western Blots, and computer simulations to study difficult protein interactions. We use these methods to investigate laboratory model protein systems of neurological disease, protein-based drugs, and proteins in human tissue. We are also initiating research to investigate protein passage through the blood-brain barrier.

Courses I regularly teach include: General Chemistry, Biochemistry, Biology of Aging, Senior Seminar.

Research

My lab investigates how intravenous immunoglobulin (IVIG) helps Alzheimers Disease patients and use this knowledge to develop improved Alzheimers Disease treatments. IVIG does show efficacy with Alzheimer's patients but on too limited a scale for current use as a drug. Because IVIG is a very complex drug, identifying the components that help Alzheimers patients is a critical and challenging problem.

To solve this problem, our lab has developed surface plasmon resonance (SPR) microfluidic sensors that are designed to specifically isolate and study specialized IVIG antibody subgroups. At UWT, we seek to employ our SPR method to measure two antibody properties that could benefit Alzheimers patients by reducing neuroinflammation: (1) antibody targeting to Alzheimer's brain plaques and (2) attached anti-inflammatory sugar groups. Specifically, we aim to determine if these two properties are found on the same antibody subgroup in IVIG. We also aim to determine if this critical antibody species is missing in late-stage Alzheimers patients and individuals genetically predisposed to AD.

A successful outcome of these studies could directly lead to an improved Alzheimers therapy via enrichment of IVIG antibodies with these special anti-inflammatory properties and/or design of non-antibody drugs to replicate the key IVIG properties. In parallel, we also hope to better understand how a healthy immune system prevents neuroinflammation in the aging brain.

Teaching

My teaching goal at University of Washington Tacoma is to develop meaningful courses that give students the tools to engage in modern interdisciplinary life science careers. In conjunction with basic life science content, I strive to introduce new technology, approaches to handle large datasets of information, and the science of systems.

  • TESC 141 General Chemistry I
  • TESC 200 Environmental Seminar
  • TESC 405 Introduction to Biochemistry I
  • TESC 406 Introduction to Biochemistry II
  • TESC 410 Environmental Science Senior Seminar
  • TESC 490 Biology of Aging

Selected Publications

  • Quintyn RS, Zhou M, Dagan S, Finke, JM, Wysocki VH. 2013. Ligand binding and unfolding of tryptophan synthase revealed by ion mobility-tandem mass spectrometry employing collision and surface induced dissociation. International Journal of Ion Mobility Spectroscopy, 16:133-143.
  • Digambaranath JL*, Campbell TV*, Chung A*, McPhail MJ*, Stevenson KE*, Zohdy MA, and Finke JM. 2011. An accurate model of polyglutamine. Proteins: Structure, Function, Bioinformatics, 79:1427-1440.
  • Klaver AC, Coffey MP, Smith MP, Finke JM, Dang LA, and Loeffler DA. 2011. ELISA measurement of specific non-antigen-bound antibodies to Abeta1-42 monomer and soluble oligomers in sera from Alzheimer's disease, mild cognitively impaired, and noncognitively impaired subjects. Journal of Neuroinflammation, 8:93.
  • Patrias LM, Klaver AC, Coffey MP, Finke JM, Digambaranath JL*, Dang L, Martinez AA, and Loeffler DA. 2011. Effects of External Beam Radiation on In Vitro Formation of Abeta1-42 Fibrils. Radiation Research, 175:375-381.
  • Klaver AC, Patrias LM, Finke JM, and Loeffler DA. 2011. Specificity and Sensitivity of the A² Oligomer-Specific ELISA. Journal of Neuroscience Methods, 195:249-254.
  • Digambaranath JL*, Dang L, Dembinska M*, Vasyluk A*, and Finke JM. 2010. Conformations with soluble oligomers and insoluble aggregates revealed by resonance energy transfer. Biopolymers, 93:299-317.
  • Klaver AC, Patrias LM, Coffey MP, Finke JM, and Loeffler DA. 2010. Measurement of anti-Abeta1-42 antibodies in intravenous immunoglobulin with indirect ELISA: the problem of nonspecific binding. Journal of Neuroscience Methods, 187:263-269.
  • Klaver AC, Finke JM, Digambaranath JL*, Balasubramanian M, and Loeffler DA. 2010. Antibody concentrations to Abeta1-42 monomer and soluble oligomers in untreated and antibody-antigen-dissociated intravenous immunoglobulin preparations. International Immunopharmacology, 10:115-119.
  • Rao MK*, Chapman TR*, and Finke JM. Crystallographic B-factors Highlight Energetic Frustration in Aldolase Folding. Journal of Physical Chemistry B. 112:10417-10431 (2008).
  • Patel B*, Finke JM. Folding and unfolding of yTIM monomers and dimers. Biophysical Journal 93:2457-2471 (2007).

(*student co-author)

Affiliations

  • American Chemical Society
  • Protein Society
  • Biophysical Society

Professional Service

  • Grant Reviewer: National Science Foundation, Alzheimers Association, US/Israel Binational Foundation
  • Journal Reviewer: Biophysical Journal, Proteins: Structure, Function, Bioinformatics, Journal of Physical Chemistry B, Journal of Molecular Biology, Journal of Chemical Physics, Biochemistry/li>
  • Meeting Organizer: 2008, 2010 American Chemical Society Student Members Meeting - Detroit Section
  • Curriculum Committee: William Beaumont Hospital School of Medicine
  • Judge: 2011 Detroit Science Olympiad

Honors and Awards

  • 1998, Graduate Research Travel Award, University of California at San Diego
  • 1998, Growth Regulation and Oncogenesis Training Award (5-T32 CA 09523-15), NIH/NCI
  • 2001, La Jolla Interfaces in Science Postdoctoral Fellowship, Burroughs Welcome Foundation
  • 2002, National Research Service Award (GM064936-01), NIGMS/NIH
  • 2005, Faculty Start-Up Award, Camille and Henry Dreyfus Foundation